

结构原型测试

什么是结构原型测试?

结构原型测试是在开发阶段验证结构完整性和空间硬件性能的重要步骤。它让制造商能够以更低成本的方式确定大型结构的关键参数,进行多次测试和优化,然后再进入最终设计或生产。这是我们**空间应用测试服务**的重要组成部分。

什么是结构原型?

在结构测试中,**结构原型**是一种早期的原型或航天器或其部件的物理模型,用于评估其结构完整性和机械性能。结构原型通常模拟最终设计的**尺寸、材料**和**机械接口**,但可能会简化或省略非关键的细节,例如可能制作成平面而非曲面。

这种方法可以多次测试不同的变体,或者测试大规模模型的某个代表性区域。由于测试范围较小,测试成本较低且周期较短,相比完整模型的测试更加高效。

通过专注于关键结构元素,如焊接点、铆接点、加强筋端部或窗框切口,结构原型测试能够帮助工程师在设计阶段尽早发现潜在弱点。因此,结构原型成为重要的中间测试平台,填补理论设计计算与最终硬件认证之间的空白。

我们提供哪些空间应用的结构原型测试服务?

在**Applus+ Laboratories**,我们提供全面的结构原型测试服务,帮助您在投入大规模生产前验证空间硬件的**结构完整性**和**性能**。我们的服务包括:

静态测试:在控制的负载条件下验证结构功能和性能,确保设计能够承受正常及意外的负载场景。

- **刚度评估**:通过应用预定义的负载案例,评估整个模型或特定位置的刚度,并与设计要求进行对比。
- **极限负载和最终负载测试**:将结构原型推至计算的负载条件,确保它能够承受设计负载而不对飞行硬件造成不可逆的损坏。
- **破坏负载测试**:在最坏情况下,识别导致结构失效的确切负载和变形条件,为设计优化和材料选择提供宝贵数据。
- **不确定性评估**: 我们提供专门的不确定性评估,以了解单个传感器(如力传感器)或 多个传感器对计算参数(如刚度)的影响。

为了获得精准的高质量数据,我们采用多种先进仪器,包括**应变片、位移传感器**和**数字图像相关(DIC)系统**。通过多个负载案例——如调试、刚度评估、极限负载应用和破坏测试——我们为您的原型提供可靠的分析数据。

结构原型测试有哪些优势?

采用结构原型测试方法对空间硬件进行测试,为制造商、集成商和空间机构提供以下优势:

- **成本节约**: 在原型测试阶段发现和解决问题,比在后期开发或发射后发现问题成本更低。
- **早期风险降低**: 专注于焊接点、切口和接口等关键细节,可以在最终生产硬件前识别 并修复设计缺陷。
- **加快设计迭代**: 快速且频繁的测试周期使开发者能快速优化设计,简化开发流程并提高最终产品质量。
- **提高可靠性**:通过彻底测试关键部件和接口,提高系统可靠性。
- 数据质量提升:配备丰富传感器的原型测试提供材料行为和结构响应的详细数据,有助于更准确地预测最终硬件表现。
- **支持决策**:通过测试获得的数据支持材料选择、生产方法和设计修改的决策,提高硬件可靠性和任务成功率。

为什么选择Applus+ Laboratories进行空间应用的结构原型测试?

选择Applus+Laboratories合作,您将受益于丰富的经验、先进的测试能力以及对卓越的追求:

- **专业知识**: 我们的工程团队在空间工业的结构测试方面有丰富经验。我们不仅提供数据,还帮助您解释和应用测试结果。
- **定制化解决方案**: 我们设计量身定制的测试方案、负载引入元素和专用工具,以满足 您的特定需求,无论是独特的接口还是复杂的几何形状。
- **先进的仪器设备**: 我们的仪器配置(从应变片到DIC系统)确保精确、高分辨率的测量,支持结构原型的可靠验证。

- 成功案例:我们在欧洲发射计划和空间任务(如Vega-C和Ariane 6)中的成功合作历史,证明了我们服务的可靠性、质量和按时交付能力。
- **全方位支持:** 从概念开发和有限元分析(FEA)到测试执行和最终认证,Applus+Laboratories提供全面支持,减少您资格认证和任务准备所需的时间。

选择Applus+ Laboratories,您将拥有一个值得信赖的测试伙伴,我们了解空间结构的复杂性,提供灵活的原型测试服务,并交付可靠的基于数据的洞察能力,帮助您做出明智决策并提高任务成功的可能性。